Categories: Knowledge Center

Beyond Prototyping: Scaling Up to Additive Manufacturing for Production

Previously published on fastradius.com on September 26, 2018

Most are well-acquainted with additive manufacturing (AM) — as a rapid prototyping tool, at least. And while many companies believe and perpetuate the myth that AM is only a prototyping tool, innovators in a range of markets (e.g., aerospace, healthcare, consumer goods and more) are already using AM for production-grade manufacturing when design, performance and cost factors align.

Exploring AM as a means of production opens up design and performance possibilities simply not possible with CNC machining, urethane casting or injection molding. This article will cover how organizations can:

  • Identify if there’s a strong business case for switching to AM for your part or product.
  • Leverage design for additive manufacturing (DFAM) principles for a seamless transition from rapid prototyping to rapid production.

Building a Business Case for Adopting Production-Grade Additive Manufacturing

Generally speaking, switching to production-grade AM for a part or product makes sense if there’s potential for adding value through:

  • Lightweighting Your Product
    Lightweighting products using AM advances material usage and performance — and opens up opportunity to capture savings throughout the product’s lifecycle. AM has enabled the weight reduction of aerospace parts by as much as 70 percent, saving about $3,000 per year in fuel.
  • Low-Cost Mass Customization
    Consumer demand for customization is rising, with 30 percent of Americans interested in product personalization. And additive manufacturing uniquely allows product designers to meet this demand with lower customization costs and lead times than legacy production methods.Once the base component of your product has been validated with AM, personalizing the product with a corporate logo or different texture is a simple change in the CAD file — with no custom tooling required. Allowing consumers to tailor a product to their design preferences or needs not only helps you stand out among the competition, but it also ultimately provides more value to the customer.
  • Enhancing Your Product’s Performance
    Virtually any shape, feature or function can be produced using AM. And product designers can experiment with vastly different geometries and textures with each design iteration without incurring retooling costs — which can range from $25,000 to $100,000.
  • Supply Chain Efficiency
    It’s estimated that companies leveraging on-demand additive manufacturing can achieve total supply chain savings as high as 50 to 90 percent. Especially for companies selling large quantities of replacement parts, on-demand additive manufacturing opens up opportunity to eliminate warehousing costs and reduce the risk of part obsolescence.
  • Faster Product Iteration
    AM allows design teams to refine and optimize their product with each design iteration. And because you’re prototyping on the same machine your product will be produced on, you can begin to validate the manufacturing process and your product’s performance during the prototype stage. In some instances, the time it takes to go from initial product concept to final product design can be reduced by up to 90 percent.

There are many benefits to making the switch to AM, but of course there are challenges to consider. Producing a part through AM may mean you’re paying a higher per-part cost than conventional manufacturing. However, those fees can be offset because AM also virtually eliminates the need for warehousing, which is critical because housing inventory can add anywhere from 20 to 25 percent to overall costs of production. Contact us today to learn more.

SyBridge Technologies

Recent Posts

How SyBridge Expertise Optimizes Your Process and Lowers Costs

How SyBridge Expertise Optimizes Your Process and Lowers Costs In the fast-paced world of manufacturing,…

5 days ago

2024 Trends in Cosmetic Packaging

Imagine a world where your product stands out on crowded shelves, not just visually, but…

1 month ago

7‌ ‌Common‌ ‌Injection‌ ‌Molding‌ ‌Defects‌ ‌and‌ ‌How‌ ‌to‌ ‌Avoid‌ ‌Them‌

Injection molding is an efficient production method when high volumes of identical parts are needed. However,…

3 months ago

Critical Design Guidelines for Urethane Casting

As a production method, urethane casting sits in stark contrast to the hard tooling of injection molding. Whereas injection…

3 months ago

The Ultimate CNC Design for Manufacturability (DFM) Checklist

CNC machining is among the most popular manufacturing methods because the process is highly versatile, repeatable,…

4 months ago

HP Multi Jet Fusion Design Guidelines

Originally published on fastradius.com on October 20, 2021 Multi Jet Fusion enables the efficient production…

5 months ago